Chapter 1: General Principles Main goals and learning objectives

- Introduce the basic ideas of Mechanics
- Give a concise statement of Newto n's laws of motion and gravitation
- Review the principles for applying the SI system of units
- Examine standard procedures for performing numerical calculations
- Outline a general guide for solving problems

Mechanics
Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces
Goal for engineers:
 TAM LIZ

normal force
friction force

Fundamental concepts

Idealizations:

- Particle:
Particle: mass but sire is neglected
- Rigid Body:
shape of the body does not change before a after
- Concentrated Force:
force applied over a small area compared to Understanding and applying these things allows for amazing size of $\mathrm{bod} y$ achievements in engineering! (airplanes, robotics, etc)

Newton's laws of motion
conservation of linear momentum, $\underset{\sim}{P}$

First law:
An object remains at rest or moves with constant velocity unless acted upon by a net force. $p=$ cons.
\sim

Second law: a particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration a that is proportional to the particle mass m :

Third law: the mutual forces of action and reaction between two particles are equal
opposite
colinear

Newton's law of gravitational attraction

The mutual force \mathbf{F} of gravitation between two particles of mass m_{1} and m_{2} is given by:

$$
F=\frac{G \cdot m_{1} \cdot m_{2}}{r^{2}}
$$

G is the universal constant of gravitation (small number) r is the distance between the two particles

Weight is the force exerted by the earth on a particle at the earth's surface:

$$
W=m \cdot \frac{G \cdot M_{e}}{r_{e}^{2}}=m \cdot g
$$

M_{e} is the mass of the earth

$$
\text { mass of particle } \quad g=\frac{G_{1} \cdot M_{e}}{r_{e}^{2}}
$$

r_{e} is the distance between the earth's center and the particle near the surface
g is the acceleration due to the gravity

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
- Actual price $=\$ 50,000$
- Paid while trading on the market: $\$ 800,000$
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons! ${ }_{\chi}$ He landed the plane safely without power on
 an emergency airstrip.

Mars climate orbiter -- $\$ 327.6$ million

mSTYLE

The 'super-tall' age is here: World

 welcomes 100th mammoth skyscraper

Numerical Calculations
Dimensional Homogeneity
Equations must be dimensionally homogeneous, i.e., each term must be expressed in the same units. Consider the following example:

www.mobileread.com

Numerical Calculations

Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

Example 1: If $d=3.2 \mathrm{in} ., w=1.413 \mathrm{in}$., and $h=2.7 \mathrm{in}$., then

